Technical Report 172, c4e-Preprint Series, Cambridge

Extension of moment projection method to the fragmentation process

ref: Technical Report 172, c4e-Preprint Series, Cambridge

Authors: Shaohua Wu, Edward K. Y. Yapp, Jethro Akroyd, Sebastian Mosbach, Rong Xu, Wenming Yang, and Markus Kraft

Associated Themes: Numerics and Particle Processes

  • The moment projection method (MPM) is extended to include the fragmentation process
  • MPM is tested for symmetric fragmentation and erosion fragment distribution functions and shows high accuracy
  • MPM is also able to accurately simulate the combined processes of inception, growth, shrinkage, coagulation and fragmentation

abstractThe method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments, hybrid method of moments and a high-precision stochastic solution calculated using the established direct simulation algorithm and advantages of MPM are drawn.

Material from this preprint has been published in: Journal of Computational Physics 335, 516-534, (2017)


PDF (1.58 MB)