A new model for silicon nanoparticle synthesis

Abstract

This work presents a novel multivariate particle model to simulate the synthesis of silicon nanoparticles across a wide range of process conditions. The gas-phase mechanism of Ho et al. (1994, J. Phys. Chem. 98, 10138–10147) is simultaneously solved with a stochastic population balance incorporated a detailed multidimensional particle model. A systematic parameter estimation procedure is used to adjust gas-phase and heterogeneous pre-exponential factors to obtain fits with experimental results. The model is tested against a six different experimental configurations, with excellent fit observed for the majority of cases. It was found that primary particles were too large under conditions of finite-rate sintering, leading to the recommendation that the model could be made more robust by development of accurate sintering kinetics for silicon nanoparticles.


Access options

Keywords: nanoparticles, nucleation, parameter estimation, population balance, silicon,

Associated Projects: Nanoparticles and Particle Processes

*Corresponding author:
Telephone:Department +44 (0)1223 762784 (Dept) 769010 (CHU)
Mobile +49 173 3045528 and +44 7944 237879
Address:Department of Chemical Engineering
University of Cambridge
West Cambridge Site
Philippa Fawcett Drive
CAMBRIDGE CB3 0AS
United Kingdom
Website:Personal Homepage
vCard:Download