Automated IC engine model development with uncertainty propagation


This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented. Data from seven operating points have been extracted from the proposed data model and have been incorporated into a state-of-the-art in-cylinder IC engine model through the optimization of model parameters whilst accounting for the model parameter and experimental uncertainties.

Access options

Keywords: computational modelling, detailed chemistry, homogeneous charge compression ignition (HCCI), ignition, kinetic model, model, model optimisation, modelling, response surface methodology, surface, uncertainties, variance reduction,

Associated Project: Engines

*Corresponding author:
Telephone:Department +44 (0)1223 762784 (Dept) 769010 (CHU)
Mobile +49 173 3045528 and +44 7944 237879
Address:Department of Chemical Engineering
University of Cambridge
West Cambridge Site
Philippa Fawcett Drive
United Kingdom
Website:Personal Homepage