Combustion and Flame has published the following papers:

Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames,

Jasdeep Singh, Robert I. A. Patterson, Markus Kraft, and Hai Wang, Combustion and Flame 145, 117-127, (2006)

A computational study of an HCCI engine with direct injection during gas exchange,

Haiyun Su, Alexander Vikhansky, Sebastian Mosbach, Markus Kraft, Amit Bhave, Kyoung-Oh Kim, Tatsuo Kobayashi, and Fabian Mauss, Combustion and Flame 147, 118-132, (2006)

A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames,

Michael Balthasar and Markus Kraft, Combustion and Flame 133, 289-298, (2003)

Extending stochastic soot simulation to higher pressures,

Robert I. A. Patterson, Jasdeep Singh, Michael Balthasar, Markus Kraft, and Wolfgang Wagner, Combustion and Flame 145, (3), 638-642, (2006)

Sources of CO emissions in an HCCI engine: A numerical analysis,

Amit Bhave, Markus Kraft, Luca Montorsi, and Fabian Mauss, Combustion and Flame 144, 634-637, (2006)

Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting,

Matthew S. Celnik, Robert I. A. Patterson, Markus Kraft, and Wolfgang Wagner, Combustion and Flame 148, (3), 158-176, (2007)

Models for the aggregate structure of soot particles,

Robert I. A. Patterson and Markus Kraft, Combustion and Flame 151, 160-172, (2007)

Modes of neck growth in nanoparticle aggregates,

Neal M. Morgan, Robert I. A. Patterson, and Markus Kraft, Combustion and Flame 152, (2), 272-275, (2008)

Aromatic site description of soot particles,

Matthew S. Celnik, Abhijeet Raj, Richard H. West, Robert I. A. Patterson, and Markus Kraft, Combustion and Flame 155, (1-2 ), 161-180, (2008)

A statistical approach to develop a detailed soot growth model using PAH characteristics,

Abhijeet Raj, Matthew S. Celnik, Raphael Shirley, Markus Sander, Robert I. A. Patterson, Richard H. West, and Markus Kraft, Combustion and Flame 156, 896-913, (2009)

Towards a detailed soot model for internal combustion engines,

Sebastian Mosbach, Matthew S. Celnik, Abhijeet Raj, Markus Kraft, Honghi R. Zhang, Shuichi Kubo, and Kyoung-Oh Kim, Combustion and Flame 156, (6), 1156-1165, (2009)

A detailed kinetic model for combustion synthesis of titania from TiCl4,

Richard H. West, Raphael Shirley, Markus Kraft, C. F. Goldsmith, and William H. Green, Combustion and Flame 156, 1764-1770, (2009)

A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency,

Abhijeet Raj, Markus Sander, Vinod Janardhanan, and Markus Kraft, Combustion and Flame 157, 523-534, (2010)

Modelling the internal structure of nascent soot particles,

Tim Totton, Dwaipayan Chakrabarti, Alston Misquitta, Markus Sander, David Wales, and Markus Kraft, Combustion and Flame 157, 909-914, (2010)

Mapping surrogate gasoline compositions into RON/MONspace,

Neal M. Morgan, Andrew J Smallbone, Amit Bhave, Markus Kraft, Roger Cracknell, and Gautam Kalghatgi, Combustion and Flame 157, 1122-1131, (2010)

Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics,

Jonathan E. Etheridge, Sebastian Mosbach, Markus Kraft, Hao Wu, and Nick Collings, Combustion and Flame 158, 179-188, (2011)

Theoretical insights into the surface growth of rutile TiO2,

Raphael Shirley, Jethro Akroyd, Luke Miller, Oliver R. Inderwildi, Uwe Riedel, and Markus Kraft, Combustion and Flame 158, (10), 1868-1876, (2011)

Iterative improvement of Bayesian parameter estimates for an engine model by means of experimental design,

Sebastian Mosbach, Andreas Braumann, Peter L.W. Man, Catharine A Kastner, George Brownbridge, and Markus Kraft, Combustion and Flame 159, 1303-1313, (2012)

A new model for silicon nanoparticle synthesis,

William J. Menz and Markus Kraft, Combustion and Flame 160, 947-958, (2013)

,

, , ()

Solid-liquid transitions in homogenous ovalene, hexabenzocoronene and circumcoronene clusters: A molecular dynamics study,

Dongping Chen, Jethro Akroyd, Sebastian Mosbach, Daniel Opalka, and Markus Kraft, Combustion and Flame 162, (2), 486-495, (2015)

,

, , ()

Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame,

Edward K. Y. Yapp, Dongping Chen, Jethro Akroyd, Sebastian Mosbach, Markus Kraft, Joaquin Camacho, and Hai Wang, Combustion and Flame 162, 2569-2581, (2015)

PAH structure analysis of soot in a non-premixed flame using High-Resolution Transmission Electron Microscopy and Optical Band Gap Analysis,

Maria Botero, Erin M. Adkins, Silvia Gonzalez Calera, Houston Miller, and Markus Kraft, Combustion and Flame 164, 250-258, (2016)

Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame,

Edward K. Y. Yapp, Robert I. A. Patterson, Jethro Akroyd, Sebastian Mosbach, Erin M. Adkins, J. Houston Miller, and Markus Kraft, Combustion and Flame 167, 320-334, (2016)

Skeletal chemical mechanism of high-temperature TEOS oxidation in hydrogen-oxygen environment,

Daniel Nurkowski, Philipp Buerger, Jethro Akroyd, Sebastian Mosbach, and Markus Kraft, Combustion and Flame 166, 243-254, (2016)

Modelling PAH curvature in laminar premixed flames using a detailed population balance model,

Edward K. Y. Yapp, Clive G. Wells, Jethro Akroyd, Sebastian Mosbach, Rong Xu, and Markus Kraft, Combustion and Flame 176, 172-180, (2017)

A big data framework to validate thermodynamic data for chemical species,

Philipp Buerger, Jethro Akroyd, Jacob W. Martin, and Markus Kraft, Combustion and Flame 176, 584-591, (2017)

Outlier analysis for a silicon nanoparticle population balance model,

Sebastian Mosbach, William J. Menz, and Markus Kraft, Combustion and Flame 177, 89-97, (2017)

Modelling TiO2 formation in a stagnation flame using method of moments with interpolative closure,

Manoel Y Manuputty, Jethro Akroyd, Sebastian Mosbach, and Markus Kraft, Combustion and Flame 178, 135-147, (2017)

A systematic method to estimate and validate enthalpies of formation using error-cancelling balanced reactions,

Philipp Buerger, Jethro Akroyd, Sebastian Mosbach, and Markus Kraft, Combustion and Flame 187, 105-121, (2018)