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Motivations

 Understanding what size graphene flakes
form nanoparticles and are present in flames.

«  Designing molecules for quantum dots,
organic solar cells, and molecular electronics.

Oxidation products

o 5 Wy SF-PDI2 SF-PDI4

Local spin distribution for C  H,,

‘e
Graphitic aggregates

Yang, Lei, et al. Journal of Power
Sources 324 (2016): 538-546.

Incipient particles

P S Y
: T3

A
Tl
“A'A

Re st

o
Small aromatics
$xX e
Small radicals
“;\.?.\s’.: A’\l'.
Fuel + Oxidizer
'u Ay xn.‘| .}
H. Michelsen — CEFRC (2016)

Kim, Dae-Yeong, et al. " Nanomaterials 9.5 (2019): (I\glézlagr)nrgg and Stuparu. Nature Communications Chemistry 2.1

793.
am2145@cam.ac. uk AW g:mg Angiras Menon

B CAMBRIDGE

» CARES




Eq/28

- 4.00
1 140 ¢ I
-: 350
~1.20 [
E 1 3.00
1.00 | :
g 4 250
§ 080 |
he 1 2.00
0.1} 2 I
5 0.60 4 150
= I
5 0.40 1 1.00
() I
|
0.20 1 050
1
0.00 - 1 J 0.00
0.01 PR PR 0 10 20 30
1 10 100 Number of Six Membered Rings

Number of rings (M)

Robertson, & O’reilly, Physical Review B, 35(6),

2946, (1986).

am2l45@cam.ac.uk

Adkins & Miller(2015). Physical Chemistry
Chemical Physics, 17(4), 2686-2695.

ES

G 02
(~S/ee
SN
OO

C ’\\\<\-\
\656\\9

Pt
NS

Martin, Jacob W., et al. The Journal of Physical
Chemistry C 122.38 (2018): 22210-22215.

y CoMo -
@ﬁ CROUE Angiras Menon

§ CAMBRIDGE 4

CARES

Optical Band Gap (eV)



Commodo, Matrio, et al. Combustion and
Flame 205 (2019): 154-164.-
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What DFT "How is the optical )
methods are band gap of
Key Questions: |  suitable for nanographenes
computing band impacted by their
L gaps? ) U structure?
Ve )

What does this mean for
combustion and carbon
material applications?

4 N\
Determine

1) Impact of size, cross-

Compute optical band linking, curvature, and
gap for a variety of PAHs radical character on OBG
2) What this could mean for

. J tuning carbon nanoparticles
- J

Objectives:
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Methodology

Test Set of Molecules
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Choosing a computational method
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Tested several popular computational chemistry methods based on density

functional theory.

Certain DFT methods can reproduce experimental measurements
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Traditional model nanographenes

® Acenes
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« All three groups approach a zero band gap limit
 Inflames: 10 — 25 rings in size

Size and symmetry of nanographene flake is key
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Crosslinked Structures
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Cross-links have little impact on the band gap.

am2145@cam.ac.uk @ﬁ g:(mg Angiras Menon i %K'gﬁlﬁ(é'f 0



4.6 EHDMO—LUMD

monomer
4.4 - ~
M=2 ([
> 4.2 ml M, =4 -Mmaj=?
m P - / - : “
- 4 0 i ! \ I | k
° COFEERy QO
© \ Q / \ J
) 3.8 A Seo=’ h 9 @@
\ o e o M:T [-y-m|.-_-:-':|J.-'“:D
g 3.6 - N - I
> a%a
_ -
|
O
=
T JL L
P
LS

(@) (b) (c) (d) (e) (f) (g) (h) () ()
Molecule

The largest fragment (lowest band gap) is most important.
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Effect of rotation on optical band gap

. Formation of cross-

- 0.08 link enables rotation
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Rotation allows tunability of optical band gaps.
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Curved vs. planar structures
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1 Pantagon also approach zero-

2 Pentagons
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4-6 Pentagons
— curved PAH fit
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«  More pentagons
results in more
curvature - higher
optical band gap
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Rabenau, T., et al. Zeitschrift fir Physik B Condensed Matter
90.1 (1993): 69-72.
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Curved structures
also approach zero-
band gap limit.

More pentagons
results in more
curvature - higher
optical band gap

Curved nano-
graphenes coincide
with planar structures
for larger sizes.

Smaller curved nano-graphenes have larger band gaps.

14



Radical vs planar structures
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Hydrogen termination does not appear to influence band gap.

Mishra, Shantanu, et al. Journal of the American Chemical
Society (2019).
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Radical vs planar structures
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Mishra, Shantanu, et al. Journal of the American Chemical
Society (2019).

n-radical nanographenes have lower band gaps.
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Conclusions

« The optical band gap of nano-graphenes is highly
sensitive to the underlying structure — size,
symmetry, curvature, and m-radical character are all
Important and could be useful for tailoring band gap
to different applications.

* Other features are less impactful, with cross-linking
and hydrogen termination not influencing the optical
band gap significantly.

« (OBGs observed in flames can be attributed to
moderate sized model nano-graphenes, larger
curved structures, or smaller -radical structures.
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In this work, the optical band gaps of polycyclic aromatic hydrocarbons (PAHs) crosslinked via an
aliphatic bond, curved via pentagon integration and with radical character were computed using density
functional theory. A variety of different functionals were benchmarked against optical band gaps (OBGs)
measured by ultraviolet-visible spectroscopy with HSEQ6 being most accurate with a percentage error
of 6% for a moderate basis set. Pericondensed aromatics with different symmetries were calculated
with this improved functional providing new scaling relationships for the OBG versus size. Further
calculations showed crosslinks cause a small decrease in the OBG of the monomers which saturates
after 3—4 crosslinks. Curvature in PAHs was shown to increase the optical band gap due to the resulting
change in hybridisation of the system, but this increase saturated at larger sizes. The increase in OBG
between a flat PAH and a strained curved one was shown to be equivalent to a difference of several
rings in size for pericondensed aromatic systems. The effect of o-radicals on the optical band gap was
also shown to be negligible, however, x-radicals were found to decrease the band gap by ~05 eV.
These findings have applications in understanding the molecular species involved in soot formation.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrogen terminated
graphene fragments ubiquitous in nature with a rich chemistry.
A delocalised n-bonding network stabilises these pericondensed
aromatics making them the thermodynamically preferred
arrangement for hydrocarbons.’ This stability makes them
ubiquitous in thermal processes such as in interstellar dust,’
the moon Titan's atmosphere™* and terrestrial combustion.”
Their rich chemistry has also attracted interest for molecular
electronics with a variety of graphene ribbons synthesized and

integrating topological defects such as pentagonal rings are
two such schemes for tuning the electronic properties that
have not received much theoretical study to date. An example
electronic application for PAHs curved by pentagon integra-
tion is their potential in batteries, as they have been shown to
store large amounts of lithium.”

Our groups main interest is the role of PAHs as precursors
for carbonaceous particulates in flames. A fundamental under-
standing of this process is of great interest, be it for mitigating
emissions from combustion or for the commercial production
of carbonaceous particles for applications such as tire filler
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State Literature Method Literature Vertical Excitation This work / eV
Energy / eV
Pyrene - 2nd bright state MRCI 3.81 3.73
Circumpyrene - 15t excited MRCI 2.22 2.41
singlet state
Circumpyrene - 2" excited MRCI 2.36 2.54
singlet state
Circumcoronene - 1%t excited MRCI 1.94 2.15
singlet state
Circumcoronene - 2" excited MRCI 2.37 2.39
singlet state
Phenalenyl — 15t excited state RAS-CI 2.76 2.82
Phenalenyl — 2" excited state RAS-CI 3.04 3.05
Triangulene — Singlet excited RAS-CI 0.57 0.52
state
Triangulene — Triplet excited RAS-CI 2.82 2.71
state
10-ring Triangulene — Quartet CASSCF 3.3
excited state
10-ring Triangulene — Quartet MR-CISD 3.1
excited state )8
10-ring Triangulene — Quartet MR-CISD+Q 3.0

excited state
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