Welcome from the Computational Modelling Group

A picture showing several members of the CoMo Group

Welcome to the website of the CoMo Group. We develop and apply modern numerical methods to problems arising in Chemical Engineering. The overall aim is to shorten the development period from research bench to the industrial production stage by providing insight into the underlying physics and supporting the scale-up of processes to industrial level.

The group currently consists of 22 members from various backgrounds. We are keen to collaborate with people from both within industry and academia, so please get in touch if you think you have common interests.

The group's research divides naturally into two inter-related branches. The first of these is research into mathematical methods, which consists of the development of stochastic particle methods, computational fluid dynamics and quantum chemistry. The other branch consists of research into applications, using the methods we have developed in addition to well established techniques. The main application areas are reactive flow, combustion, engine modelling, extraction, nano particle synthesis and dynamics. This research is sponsored on various levels by the UK, EU, and industry.

Markus Kraft's Signature
Markus Kraft - Head of the CoMo Group

Recent News feed image Subscribe

PhD position in Aerosol Science

13th February, 2019
PhD position in Aerosol Science Picture

The EPSRC Centre for Doctoral Training in Aerosol Science is offering a number of fully-funded PhD studentships. Students will spend their first 7 months at the University of Bristol taking courses in aerosol science before moving on to their final university placement. Within this CDT, a placement on the topic "Modelling the plasma synthesis of graphene" is available at the Computational Modelling Group.

Plasma synthesis offers a potential route for the bulk synthesis of graphene. Advantages include avoiding the need for a catalyst (thus avoiding the use of rare-earth metals) and the ability to operate at atmospheric pressures (which reduces the cost and complexity of the process), both of which potentially make the process easier to scale up than other manufacturing routes. However, there remains a lack of understanding of how the process variables, such as temperature, affect the quality of the product. The choice of process conditions and reactants is critical to avoid undesirable defects in the carbon structure.

The purpose of this project is to develop a model to explain the processes controlling graphene plasma synthesis. During the project the student will:

  • Extend existing Kinetic Monte Carlo models for the growth of carbonaceous nanomaterials to test different hypotheses to explain the observations made in graphene experiments.
  • Estimate thermodynamic data and rate constants using Density Functional Theory (DFT) calculations.
  • Expand current understanding of the chemistry of polycyclic aromatic hydrocarbons and their role in the graphene, carbon nanotube and carbonaceous particles chemistry.
The models will be developed using data from experiments that investigated the quality and yield of graphene as a function of process conditions and choice of chemical precursor.

CoMo group open to Feodor Lynen Research Fellows

23rd January, 2019
CoMo group open to Feodor Lynen Research Fellows Picture

In 2016, Prof. Markus Kraft was awarded the Friedrich Wilhelm Bessel Award and is therefore eligible to host Feodor Lynen Research Fellows sponsored by the Alexander von Humboldt Foundation. The Feodor Lynen Research Fellowship covers the salary and travel expenses of researchers from Germany to work at the host institution for 6-24 months. In addition, the fellowship enables the successful candidate to apply for alumni sponsorship from the Humboldt Foundation after the end of the fellowship and become part of their international network of academics.

If you are interested in working at the University of Cambridge and in joining the CoMo group as a post-doctoral researcher, please check your eligibility on the official Feodor Lynen Research Fellowship website and familiarise yourself with the application procedure. You will need to write a research proposal that aligns with your professional expertise. The topic might be of computational or experimental nature but should lie within the research areas of the CoMo group.

Preprint 220 published

22nd January, 2019

Preprint 220, "Dynamic polarity of curved aromatic soot precursors", has been published!


Figure for Preprint 220In this paper, we answer the question of whether polar curved aromatics are persistently polar at flame temperatures. We find, using electronic structure calculations and transition state theory, that the inversion barriers of curved aromatics (cPAH) of 0.9-1.2 nm in diameter are high and that they are not able to invert over the timescales and at the high temperatures found in sooting flames. We find a transition for smaller curved aromatics between 11-15 (≈0.8 nm) rings where the increasing strain introduced from the pentagonal ring increases the inversion barrier leading to rigidity. We then performed ab initio quantum molecular dynamics to find the molecular dipole fluctuations of a nanometre-sized cPAH at 1500 K. We found the bending mode of the bowl-shaped molecule gave rise to the largest fluctuations on the dipole moment by ±0.5-1 debye about the equilibrium value of 5.00 debye, indicating persistent polarity. We also observed binding of a chemi-ion at 1500 K over 2 ps, suggesting the molecular dipole of cPAH will be an important consideration in soot formation mechanisms.

CoMo members attend Roundtable event on AI

22nd January, 2019
CoMo members attend Roundtable event on AI Picture

Jethro Akroyd and Oliver Inderwildi attended a Roundtable event at Chatham House to discuss Harnessing Artificial Intelligence to Decarbonise Industrial Sectors. The event was jointly organised by the Hoffmann Centre for Sustainable Resource Economy and DeepMind Ethics and Society.

Preprint 219 published

21st January, 2019

Preprint 219, "Nanostructure of Gasification Charcoal (Biochar)", has been published!


Figure for Preprint 219In this work, we investigate the molecular composition and nanostructure of gasification charcoal (biochar) by comparing it with heat-treated fullerene arc-soot. Using ultrahigh resolution Fourier transform ion-cyclotron resonance and laser desorption ionisation time of flight mass spectrometry, Raman spectroscopy and high resolution transmission electron microscopy we analysed charcoal of low tar content obtained from gasification. Mass spectrometry revealed no magic number fullerenes such as C60 or C70 in the charcoal. The positive molecular ion m/z 701, previously considered a graphitic part of the nanostructure, was found to be a breakdown product of pyrolysis and not part of the nanostructure. A higher mass distribution of ions similar to that found in thermally treated fullerene soot indicates that they share a nanostructure. Recent insights into the formation of all carbon fullerenes reveals that conditions in charcoal formation are not optimal for fullerenes to form, but instead curved carbon structures coalesce into fulleroid-like structures. Microscopy and spectroscopy support such a stacked, fulleroid-like nanostructure, which was explored using reactive molecular dynamics simulations.

Preprint 218 published

20th January, 2019

Preprint 218, "OntoKin: An Ontology for Chemical Kinetic Reaction Mechanisms", has been published!


Figure for Preprint 218An ontology for capturing both data and the semantics of chemical kinetic reaction mechanisms has been developed. Such mechanisms can be applied to simulate and understand the behaviour of chemical processes, for example, the emission of pollutants from internal combustion engines. An ontology development methodology was used to help produce the semantic model of the mechanisms, and a tool was developed to automate the assertion process. As part of the development methodology, the ontology is formally represented using OWL, assessed by domain experts and validated by applying a reasoning tool. The resulting ontology, termed OntoKin, has been used to represent example mechanisms from the literature. OntoKin and its instantiations are integrated to create a Knowledge Base (KB), which is deployed using the RDF4J triple store. The use of the OntoKin ontology and the KB is demonstrated for three use cases - querying across mechanisms, modelling atmospheric pollution dispersion and a mechanism browser tool.