Technical Report 70, c4e-Preprint Series, Cambridge

Coupling algorithms for calculating sensitivities of Smoluchowski's Coagulation equation

ref: Technical Report 70, c4e-Preprint Series, Cambridge

Authors: Peter L.W. Man, J. R. Norris, Ismael F. Bailleul, and Markus Kraft

Associated Themes: Numerics and Particle Processes


In this paper, two new stochastic algorithms for calculating parametric derivatives of the solution to the Smoluchowski coagulation equation are presented. It is assumed that the coagulation kernel is dependent on these parameters. The new algorithms (called ‘Single’ and ‘Double’) work by coupling two Marcus-Lushnikov processes in such a way as to reduce the difference between their trajectories, thereby significantly reducing the variance of central difference estimators of the parametric derivatives. In the numerical results, the algorithms are shown have have a O(1/N) order of convergence as expected, where N is the initial number of particles. It was also found that the Single and Double algorithms provide much smaller variances. Furthermore, a method for establishing ‘efficiency’ is considered, which takes into account the variances as well as CPU run times, and the ‘Double’ is significantly more ‘efficient’ compared to the ‘Independent’ algorithm in most cases.

Material from this preprint has been published in: SIAM Journal on Scientific Computing 32, 635-655, (2010)


PDF (636.4 KB)